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Transport properties of incipient gels

Sune No”rho” j Jespersen* and Michael Plischke†

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
~Received 21 May 2003; published 13 August 2003!

We investigate the behavior of the shear viscosityh(p) and the mass-dependent diffusion coefficient
D(m,p) in the context of a simple model that, as the cross link densityp is increased, undergoes a continuous
transition from a fluid to a gel. The shear viscosity diverges at the gel point according toh(p);(pc2p)2s

with s'0.65. The diffusion constant shows a remarkable dependence on the mass of the clusters:D(m,p)
;m20.69, not only atpc but well into the liquid phase. We also find that the Stokes-Einstein relationDh
}kBT breaks down already quite far from the gel point.
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I. INTRODUCTION

When a system of polyfunctional molecules is cro
linked, the transport properties such as the shear visco
and the diffusivity can be dramatically affected. In particul
the diffusivity decreases as the number of cross links is
creased and the shear modulus increases, diverging a
critical point at which a gel is formed. The diffusivity re
mains finite as the system gels since monomers and s
clusters can diffuse through the tenuous structure that c
acterizes the amorphous solid close to the critical point.
though gels have been studied for many years@1#, their criti-
cal behavior remains poorly understood. In particular
question of whether or not there exist universality clas
into which different materials can be grouped rema
largely unanswered.

In this paper, we report on extensive molecular dynam
simulations of a simple model for a gel. We study the syst
on the fluid side of the gel point from the simple liquid lim
into the critical region. We investigate the structural prop
ties of clusters and calculate both the shear viscosityh(p)
and the mass-dependent diffusion constantD(m,p) as func-
tions of the cross link densityp. We find that asp→pc ,
h(p);(pc2p)2s with s'0.65, a value somewhat smalle
than that conjectured by de Gennes@2# on the basis of an
analogy with a random superconductor network and also
dicted recently by Broderixet al. @3# for a Rouse-like mode
network. The mass-dependent diffusion constantD(m,p)
;m20.69 for a range ofp near the critical point and 3<m
<50. This behavior is consistent with earlier results forp
5pc @4# and rather close to a prediction@2# made on the
basis of a simple scaling argument. On the other hand,
value for this exponent is somewhat larger than the o
found by Küntzel et al. in a recent paper@5# in which the
exponent varies between 0.5 and 0.25 as the strength o
Zimm hydrodynamic interaction is varied. The diffusion c
efficient D(m,p)→const asp→pc for m at least as large a
10 but displays critical behavior in the next leading term
is also worth noting that, in contrast to simple liquids, t
productD(p)h(p) is not a constant but rather reflects t
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divergence ofh at the gel point.
The structure of this paper is as follows. In Sec. II, w

describe our model and the computational details. Section
contains a discussion of the geometric properties of the c
ters and the nature of the percolation transition. The sh
viscosity calculation and results are described in Sec. IV,
results for the diffusion constants are found in Sec. V. W
conclude with a short discussion in Sec. VI.

II. MODEL

The model is similar to the one employed in Ref.@4#, but
we include the details below for completeness. Our system
composed ofN5L3 (L510,13,15,20, and 30) particles in
teracting pairwise through the shifted Lennard-Jones po
tial

U~r !5H ULJ~r !2ULJ~2.5s!, r<2.5s,

0, otherwise,
~1!

whereULJ(r )54e@(s/r )122(s/r )6#. All of our simulations
are three-dimensional~3D! constant energy molecular dy
namics simulations corresponding to an average tempera
of kBT/e'1 and densityF50.8s23. These choices ensur
that the system is in the liquid-phase region of the ph
diagram@6,7#. We use periodic boundary conditions and
time step of magnitudedt50.005t, where t5Ams2/e is
the reduced Lennard-Jones time. From a typical equilibri
state of this liquid, we let the particles form a specified nu
ber n of permanent chemical bonds if they come closer th
r c521/6s'1.12, coinciding with the minimum ofU(r ). The
bond interaction is a harmonic oscillator potentialUharm(r )
51/2kr2; in our simulations we takeks2/e52.0 ~different
from Ref. @4#!. Note that this way of adding bonds violate
energy conservation; indeed we actually pump energy
the system when adding bonds. To compensate we
down the system again after having established the requ
number of bonds. With this bonding procedure cross link
is very fast—the average distance between the particle
comparable tor c , so a large number of particles are ava
able for bonding at any given instant. Each particle can bo
to a maximum off 56 other particles~excluding itself!, and
the cross link densityp is then given in terms of the numbe
of bondsn asp52n/ f N. Any number of particles, if fulfil-
©2003 The American Physical Society03-1
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ing the conditions above, can be cross linked per time s
but we halt the bond formation whenp reaches a predeter
mined value.

III. GEOMETRIC PROPERTIES

Before discussing the dynamic properties of this mod
we need some basic information about the static proper
In this section, we determine the geometrical percolat
point pc as well as the two critical exponentsn, the correla-
tion length exponent, andg, the exponent characterizing th
divergence of the weight average cluster mass~of finite clus-
ters!. We follow a procedure similar to the one used a
outlined in Refs.@4,8,9#. In order to findpc , we calculate
numerically the fractionW(L,p) of percolating systems o
sizeL3 with a bond densityp. This function is plotted in Fig.
1 for all five system sizes. The crossing points of the diff
ent curves seem to coincide, and the corresponding valu
p is thus a good estimate ofpc @4,10#. From the figure, we
determinepc50.2565 as in Ref.@4#. Finite size scaling
theory predicts thatW(L,p) does not depend onL and p
separately but only on the combinationL/j ~and the sign of
p2pc), wherej5up2pcu2n is the correlation length andn
is the correlation length exponent@12#. Thus we may write

W~L,p!5 f „L1/n~p2pc!…, ~2!

where f (x) is a scaling function. To test this hypothesis, w
replot the data forW(L,p) from Fig. 1 in Fig. 2 as a function
of L1/n(p2pc) with pc50.2565 as determined above andn
50.9. The collapse is very good, confirming the correctn
of the values forpc andn.

To compare with percolation theory we need one m
exponent, and here we consider the behavior of the we
average cluster massMw . In the thermodynamic limit, the
expected behavior isMw(p);up2pcu2g @12#. Therefore we
computeMw as a function ofp for different system sizes
and in Fig. 3 we plot the results in the formMw /Lg/n versus

FIG. 1. Fraction of systems,W(L,p), percolating in thex direc-
tion as a function ofp for five different system sizes as indicated o
the plot. The lines are guides for the eye, except in the casL
530 for which the data are fitted to a stretched exponential@11#.
We estimatepc50.2565.
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L1/n(pc2p) with g51.8 being the expected 3D percolatio
value andn andpc as determined previously. Again there
a very nice data collapse, and we therefore conclude
here as in Refs.@4,8,9# our system is consistent with the 3
percolation universality class insofar as static properties
concerned.

IV. VISCOSITY

We measure the shear viscosityh(p) by using the appro-
priate Green-Kubo formula@13,14#:

h5
1

VkBTE0

`

dt^sxy~ t !sxy~0!&, ~3!

whereV is the volume andsxy(t) is thexy component of the
stress tensor:

sxy~ t !5(
i 51

N

mvx,ivy,i1(
i 51

N

(
j , i

~yi2yj ! f x,i j . ~4!

FIG. 2. Same as Fig. 1, except hereW(L,p) is plotted as a
function ofL1/n(p2pc) with pc50.2565 andn50.9. The data col-
lapse very nicely in agreement with finite size scaling theory.

FIG. 3. Scaling plot of the weight average molecular weig
Mw . The quality of the data collapse confirmsg51.8 in accor-
dance with the 3D percolation value.
3-2
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In this equation,f x,i j is the x component of the force from
particle j on particle i, and the meaning of the remainin
terms is self-explanatory. In the simulations, we average o
several hundred samples for eachp and over three off-
diagonal components (xy,yz, andzx) of the stress tensor to
obtain slightly better statistics. It is important to note that
have discarded any sample containing a spanning clu
since for such a system the viscosity is not defined, i.e.,
right hand side of Eq.~3! diverges. Although we have simu
lated very long runs~up to t5750t), the stress correlato
Css(t)[^sxy(t)sxy(0)& has still not decayed completel
and it is necessary to add by hand an additional contribut
in particular for p close to pc . A stretched exponentia
Css(t)5a exp(2btc) with 0.1,c,0.3 seems to fit the dat
well for long times, and there are also theoretical reas
@15# to believe that this is the appropriate form. See Ref.@9#
for a thorough discussion of this point.

In Fig. 4, we have plotted the resulting values for t
viscosity for different systems sizes and at different stage
the cross linking. We note the clear power-law behavior o
side the critical region, and a fit to theL510 data in this
region yieldss50.65. The lineh}(pc2p)20.65 has also
been drawn on the plot, and it is apparent that the data
consistent with this exponent. For largep, p.0.23, there are
larger error bars and this will also affect the scaling pl
Since the viscosity diverges at the critical point with an e
ponents.0, the finite size scaling form is

h~p,L !5L2s/ng~j/L !, p,pc , ~5!

whereg is a scaling function with the limits

g~x!}H x2s/n, x→0,

const, x→`,
~6!

and j;(pc2p)2n is the correlation length, cf. Sec. III
Therefore we plot in Fig. 5hLs/n versusL1/n(pc2p) and the
collapse is quite good outside the critical region withs
50.65, whereas there is a larger scattering of the points fp
closer topc .

de Gennes has suggested@2# a value ofs'0.7 based on
an analogy between gelation and conductance in a ran

FIG. 4. The dimensionless shear viscosity as a function ofpc

2p for different L.
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mixture of normal and superconducting elements, and a g
agreement with this was found in a related model in Ref.@9#.
Here we have observed a slightly smaller value fors.

V. DIFFUSION

In this section, we extend our earlier study@4# on the
diffusion of clusters. Previously, we were concerned mai
with the behavior of the diffusion constantD(m,p) as a
function of cluster massm at the gelation pointp5pc . Here
we address thep dependence ofD for different clusters and
the validity of the Stokes-Einstein relationD(p)
}kBT/h(p) for a given cluster mass. We restrict our atte
tion to theL520 system.

To determine the diffusion constant, we use the Einst
relation:

1

6t
^„r m~ t !2r m~0!…2& →

t→`

D~m,p!, ~7!

where r m(t) is the center-of-mass position of a cluster
massm at time t, for a given value ofp ~for clarity of the
presentation, we omit the explicit dependence onp in the
notation!. When calculating the diffusion constant nume
cally we have averaged over all clusters of a given masm
and over several hundred cross linkings, and we have
carded any percolating samples. This has been done ma
for consistency when comparing withh, but in any event we
do not expect this to affect the diffusion of any but the ve
largest clusters.

First, we examine the convergence of Eq.~7! by plotting
in Fig. 6 the behavior of̂ „r m(t)2r m(0)…2&/6t for m51
~monomers! as a function of time and for three differen
values ofp. From these curves, we clearly see the existe
of long-time tails in the velocity auto-correlation function
Consider the ‘‘Green-Kubo’’ formula corresponding to E
~7!:

^„r m~ t !2r m~0!…2&
t

5E
0

t

dŝ vm~s!•vm~0!&~12s/t !. ~8!

The dominant contribution tô„r m(t)2r m(0)…2&/t at large
times is

FIG. 5. Same as Fig. 4, but here plotted in a scaling form w
s50.65.
3-3
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^„r m~ t !2r m~0!…2&
t

5D~m,p!2E
t

`

ds Cvv
(m)~s!, ~9!

whereCvv
(m)(s)5^vm(s)•vm(0)& is the velocity autocorrela

tor. Therefore, a power-law tailCvv
(m)(s);t2a in the velocity

autocorrelation function will translate into a correspondi
power-law tail ^„r m(t)2r m(0)…2&/t;D(m,p)1const(t12a)
in the Einstein relation. In simple liquids, a value ofa
53/2 is ubiquitous@14#, and has also been observed for g
lating systems in Ref.@9#; here we find that the same pow
law provides a very good fit to the data for allm, but in
particular for the small clusters. In Fig. 6, we have also pl
ted these fits to the power lawa1bt21/2, and the deviation
from the simulation results at early times is barely visible.
Fig. 7, we have done the same for clusters of mass 10,
we see the same behavior. The agreement is slightly wo
presumably due to poorer statistics of larger clusters.
note the existence of a maximum in all of the curves~though
not visible in Fig. 6 form51) for ^„r m(t)2r m(0)…2&/t. By
differentiating Eq.~8!, this can be shown to occur attm ,
wheretm is the solution to

E
0

tm
dsCvv

(m)~s!s50. ~10!

An obvious consequence of the fact that fort.tm @using Eq.
~9!#

d

dt

^„r m~ t !2r m~0!…2&
t

'Cvv
(m)~ t !,0 ~11!

is thatCvv
(m)(t) becomes negative~anticorrelation! for large t

and stays negative thereafter. This means that the 1/At tails
in Figs. 6 and 7 correspond to anegative t23/2 tail in Cvv

(m)(t).
We also note thattm is an increasing function ofm and a
decreasing function ofp.

The error made by takingD(m,p) to be the value of
^„r m(t)2r m(0)…2&/6t at the end of the simulation timet
5120t is neglibly small. Forp50.2, we have compare

FIG. 6. ^„r 1(t)2r 1(0)…2&/6t a function of time for monomers
and for three different values ofp: 0.125, 0.2 and 0.25 from top to
bottom. The long-time tails are clearly visible, and the solid lin
are fits to the same functional form~see text!.
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with simulations that are twice as long, and at least for the
lightest clusters for which we had good enough statistics,
error was less than 5%. For the smallestm where the statis-
tics are very good, one can also obtainD(m,p) from a
power-law fit as mentioned above, and the outcome is
consistent with the statement just made~the error here is
even much smaller than5%).

In Ref. @4#, we studiedD(m,pc) and found the power law
D(m,pc);m20.69. We have repeated this study up to clu
ters of size 50 and observe the same behavior over the e
range. Forp,pc , we see the same power law as a functi
of m, at least for small cluster sizes. The quality of the s
tistics for larger cluster sizes is insufficient to determi
whether there is a crossover or cutoff asm→m* (p), where
m* (p);(pc2p)21/s is the mass of the largest cluster, but
seems likely that there is. de Gennes has argued tha
masses 1,m,m* (p), D(m);m2(n1s)/(b1g) on the basis
of a Stokes-Einstein relation with a mass-dependent visco
@2#. Hereb is the exponent that describes the decrease of
order parameter near percolation:xgel;(p2pc)

b, wherexgel
is the fraction of particles on the spanning cluster andp
→pc1. The other exponents have been introduced alrea
By using the appropriate scaling relations for 3D percolat
@12#, the exponent can be rewritten so the prediction
D(m);m22(n1s)/(dn1g), where d53 is the Euclidian di-
mension. With our values for the remaining exponents,
get

D~m,p!;m20.69 for 1,m,m* ~p!. ~12!

This is in very good agreement with our simulation resu
within the observed power-law regime. The theoretical p
diction can be rewritten asD(Rg);Rg

2(11s/n) , where Rg

;m1/D f is the radius of gyration andD f is the fractal dimen-
sion. This form of the relation has sometimes~see, for ex-
ample, Ref.@16#! been used to infers from the scaling ofD
with Rg , but to the best of our knowledge the present stu
presents the first direct verification of such a link.

However, even in this regime one would expect so
additionalp dependence of the diffusion coefficient, a poi
not addressed in Ref.@2#. To this end, we plot in Fig. 8
D(m,p) as a function ofp for monomers, dimers, and trim
ers, and we see that the diffusion constants decrease~almost

FIG. 7. Same as Fig. 6 but this time for clusters of size 10.

s

3-4



t

a
-
T
ly

he
ta
s
on
e-
-

n
ns

s
,
ee
-

at

ior
to

e

to-

in
nge
the
lso
po-

The
not
ult
ver,
at a
hat

del

-

ion
e-

he
ship
olid
dif-

a-
z to
nd
the

ore

tion,

TRANSPORT PROPERTIES OF INCIPIENT GELS PHYSICAL REVIEW E68, 021403 ~2003!
linearly! as a function ofp. Moreover, the curves seem to fi
nicely to the functional formD(p)5a(pc2p)b1Dc , with a
value of the exponentb51.1. In Fig. 9, we have made
similar plot for massesm52, . . .,10, and the trends ob
served above appear to carry over to larger masses.
curves are roughly parallel, and therefore it is not unlike
that the value ofb is independent ofm, but we are unable to
confirm this from a fit to the data: the exact value of t
exponent appears to be very sensitive to noise in the da

Finally, we demonstrate a striking violation of the Stoke
Einstein relation when approaching the gelation transiti
The idea thatD}1/h is used so widely that one may som
times forget its lack of universal validity. In Fig. 10, how
ever, it is clear thatD(m,p)h increases significantly whe
p→pc . This is consistent with our previous observatio
that whereash diverges at the gelation point,D(m,p) ap-
proaches a nonvanishing constant even for large massem.
Further away from the gelation pointp&0.20, there does
however, seem to be an approximate proportionality betw
D(m,p) and h. However, in Figs. 8 and 9 we saw indica
tions that D(p);a(pc2p)b1Dc with b.1 whereash
;(pc2p)20.65, and so this apparent proportionality is
best only approximate.

FIG. 8. Diffusion constant as a function ofp for clusters of three
different sizes:m51, m52, andm53 from top to bottom. The
solid line is a fit to the functionD(p)5a(pc2p)b1Dc and Dc

50.0398,a50.131, andb51.103~see text!.

FIG. 9. Same as Fig. 8, but for clusters of sizesm52, . . . ,10
from top to bottom. The solid line is a fit, and hereDc50.0064,
a50.0324, andb51.029.
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VI. CONCLUSIONS

The main results of this study are the power-law behav
of the mass-dependent diffusion coefficient which seems
hold well away from the critical point, the failure of th
Stokes-Einstein relation and the results'0.65 for the critical
exponent of the shear viscosity. This last result, taken
gether with other recent results@8,9#, seems to support the
conjecture that the gelation transition is not classifiable
terms of a single universality class: exponents in the ra
0.3<s<0.7 have been found for models that seem, on
surface, to be very similar. The experimental situation a
does not provide much evidence for universality, both ex
nents nears50.7 @17–19# and in the range 1.1<s<1.3 @20–
24# have been reported. We sound a note of caution here:
determination of exponents through finite size scaling is
very precise, especially when quantities that are as diffic
to calculate as the shear viscosity form the dataset. Howe
it seems very unlikely that the errors are large enough th
factor of more than 2 in the exponent could be explained t
way.

The mass-dependent diffusion coefficient in this mo
displays a power-law behaviorD(m,p);m20.69, consistent
with a scaling argument of de Gennes@2#. Reexpressing this
in terms of the radius of gyration of clusters throughm
5Rg

D f , whereD f52.5 is the fractal dimension of the perco
lating cluster, the scaling prediction isD(Rg ,p)
;Rg

2(11s/n) . This yields an estimates50.65 for the viscos-
ity exponent, in good agreement with the direct calculat
from the Green-Kubo formula. Whether this connection b
tween diffusion and viscosity is general or specific to t
present model and whether there exists a similar relation
between diffusion and the elastic shear modulus in the s
phase remains a subject for further study. Using a quite
ferent model, Gadoet al. @16# have studied the self-diffusion
of cross linked polymer clusters on a lattice by bond fluctu
tion dynamics. They have also used this scaling ansat
infer the critical exponent of the shear viscosity and fou
s'1.3. Their result translates to a mass dependence of
diffusion constantD(m,p);m21, very different from that
of the present model.

Finally, we have shown that as the fluid becomes m

FIG. 10. Plot ofD(m,p) times h; obviously this is only ap-
proximately a constant, as predicted by the Stokes-Einstein rela
far away frompc .
3-5
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viscous there is a breakdown of the Stokes-Einstein
Dh}kBT, which generally holds for simple liquids. For rela
tively small concentrations of cross links, this product var
only very little, but forp'pc the divergence of the viscosit
begins to dominate the diffusion constant which seems
saturate for all cluster sizes studied atpc .
.

da

02140
w

s

to

ACKNOWLEDGMENTS

The authors wish to thank B. Jo´os and D. Vernon for
helpful discussions. Financial support from the Danish N
tional Research Council Grant No. 21-01-0335 and from
NSERC of Canada is gratefully acknowledged.
s,

. E

,

s.
@1# M. Adam and D. Lairez, inPhysical Properties of Polymeric
Gels, edited by J.P.C. Addad~Wiley, New York, 1996!, p. 87.

@2# P. de Gennes, J. Phys.~France! Lett. 40, L197 ~1979!.
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